Tetraborane(4)

on the basis of their nmr spectra contain a minor proportion of the symmetrical isomer F. This would mean that the two isomers are not resolved by gas chromatography under the conditions tried.

Noticeable differences in the infrared spectra of isomers were observed. These differences, however, cannot be interpreted on the basis of the limited evidence available at present. The spectra are consistent with the proposed structures.10

It has been reported recently¹¹ that unsymmetrically substituted borazines such as B-phenylpentamethylborazine undergo exchange of B substituents on distillation. No evidence of such exchange of B-alkyl and B-H substituents during distillation, gas chromatography or on standing at room temperature was obtained for the compounds described here. The purity of nmr samples was always checked by gas chromatography and was at least 96% and usually 99%. Exchange of substituents under more forcing conditions than those described here, however, was not investigated.

Experimental Section

All preparations were carried out under dry nitrogen. Solvents were dried by standard methods.

Preparation of the B-Substituted Borazines. In a typical reaction, 1,3-dimethyl-5-cyclohexylborazine⁸ (6.5 g, 0.025 mol) in diethyl ether (75 ml) was treated dropwise with stirring with Grignard reagent [from magnesium (0.72 g, 0.03 mg-atom) and methyl iodide (4.2 g, 0.03 mol) in ether (75 ml)]. The reaction mixture was stirred at room temperature for 24 hr. Ether was removed under reduced pressure and the residue extracted with petroleum ether (bp 40-60°) (three 50-ml portions). The insoluble magnesium compounds were filtered off and washed with petroleum ether. The filtrate was evaporated and the residue was distilled to give a fraction, bp 66-72° (0.25 mm) (4.65 g), consisting mainly (ca 80%) of compound II but also containing I, III, and IV. Yields in general were of the order of 65-75%.

Gas Chromatographic Apparatus. Analytical Apparatus. A Pye Unicam 104 Model 24 gas chromatograph with flame ionization

(10) A. Meller, Organometal. Chem. Rev., 2, 1 (1967) (11) L. A. Melcher, J. L. Adcock, and J. J. Lagowski, Inorg. Chem., 11, 1247 (1972).

detectors (nitrogen carrier gas) was fitted with columns (1.5 m long and 4 mm in internal diameter) packed with 10% silicone oil M.F.C. (Hopkin and Williams) on Celite, treated with hexamethyldisilazane.

Preparative Apparatus. A Pye Unicam 105 gas chromatograph was used, fitted with a column (3 m long and 1 cm in internal diameter) packed with 15% silicone oil on treated Celite. The column temperature was 190° and the nitrogen flow rate was about 180 ml/ min. Solutions (50% v/v) of the distilled reaction mixtures were made up in petroleum ether (bp $40-60^{\circ}$). Several injections were required to obtain sufficient material for the various measurements. Only small quantities of compounds III, IV, VI, VII, and XI were obtained even after repeated injection and collection cycles, as these components were present only in low proportion (<10%) in the reaction mixtures. Chemical analyses for these compounds were thus not obtained, although they were well characterized by other methods. As the separation of compounds IX and X was especially tedious on account of their rather similar retention times, analyses for a mixture of these isomers are presented (Table I).

Combined Gas Chromatography-Mass Spectrometry. Mass spectra were recorded on a Hitachi Perkin-Elmer RMS4 mass spectrometer at 80 eV, chamber temperature 170°. Samples were introduced via a gas chromatograph (Perkin-Elmer F11) containing a column (1.5 m \times 1-mm i.d.) packed with 10% silicone oil on Celite (80-120 mesh) at 150°. The temperature of the molecular separator (Watson-Biemann type) was 165°

Nuclear Magnetic Resonance Spectra. Proton resonance spectra were obtained using a Varian HA-100 spectrometer at 100 MHz. Borazines were dissolved in carbon tetrachloride and chemical shifts were measured relative to internal tetramethylsilane.

Chemical Analyses. These were carried out by Dr. A. Bernhardt, Elbach uber Engelskirchen, West Germany.

Registry No. MeMgI, 917-64-6; EtMgBr, 925-90-6; I, 38126-09-9; II, 38126-11-3; III, 38126-12-4; IV, 38126-05-5; V, 38126-13-5; VI, 38126-14-6; VII, 38126-06-6; VIII, 38126-10-2; IX, 38126-15-7; X, 38126-16-8; XI, 38126-32-8; XII, 38126-17-9; XIII, 38126-04-4; XIV, 38126-33-9.

Acknowledgments. I am grateful to Dr. D. Gillies for recording the nmr spectra. A grant from the Central Research Fund, University of London, to purchase the analytical gas chromatograph used in this work is acknowledged with thanks.

> Contribution from the Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Optimized Self-Consistent-Field and Localized Molecular Orbital Studies of Tetraborane(4)

JOHN H. HALL, Jr., IRVING R. EPSTEIN, and WILLIAM N. LIPSCOMB*

Received September 20, 1972

The wave function for B_4H_4 has been computed in the SCF-LCAO-MO approximation. Slater-type orbital exponents and the boron-boron distance have been optimized. The calculation shows that B_4H_4 should be stable by 316.9 kcal/mol with respect to dissociation to form BH units. The Mulliken charges are +0.0046 e on the borons and -0.0046 on the hydrogens. Calculation of localized molecular orbitals for B₄H₄ using the *ab initio* Edmiston-Ruedenberg procedure yields four central three-center B-B-B bonds localized in the faces of the tetrahedron. These bonds are, surprisingly, nonsymmetric and unequivalent. Possible reasons for this result and for the apparent instability of B_4H_4 are discussed.

Introduction

The structures of the boron hydrides have been traditionally divided into two broad categories:¹ open and closed

(1) See R. E. Williams, Inorg. Chem., 10, 210 (1971), for the names arachno, nido, and closo for B_nH_{n+6} , B_nH_{n+4} , and B_nH_{n+2} , respectively, or for their charged equivalents upon formal loss of one or more protons.

(polyhedral)² or, more picturesquely, basket and cage molecules.³ The open boranes usually, but not always, have molecular formulas $B_n H_{n+4}$ or $B_n H_{n+6}$, while the polyhedral boranes possess molecular formulas $B_n H_n^{2-}$. The ionic poly-

(2) W. N. Lipscomb, "Boron Hydrides," W. A. Benjamin, New York, N. Y., 1963.
 (3) S. F. A. Kettle and V. Tomlinson, J. Chem. Soc. A, 2002, 2007 (1969).

hedral species with n = 10, 12 exhibit remarkable stability or even pseudo-aromaticity.^{2,4} Polyhedral structures are perhaps more familiar in the extremely stable carboranes, which are derived from the parent boranes by replacing one or more B⁻ ions or BH groups by carbon atoms.

The chemistry and structures of the open boron hydrides have been extensively studied experimentally,^{2,5} and they have been the subject of a rather thorough series of theoretical investigations.⁶ The closed polyhedral molecules, particularly the carboranes, have been of great interest recently to synthetic chemists. Several remarkable compounds have been synthesized, including carborane analogs of ferrocene⁷ and a fused decaborane(10)-benzene system in which the C₆ ring shows little aromaticity.⁸

Theoretical studies of polyhedral boranes have not proceeded apace, however. While a few semiempirical⁹ and approximate nonempirical calculations^{3,10} do exist, there is only one self-consistent field (SCF) calculation on a polyhedral borane in the literature,¹¹ and only several calculations on carboranes have been undertaken.¹²

Diborane(6) has been used as a model system for open boranes and a number of ab initio SCF calculations on these molecules using Slater exponents optimized for B₂H₆ have been carried out.⁶ The availability of accurate optimized exponents from *ab initio* SCF calculations¹³ and accurate bond distances obtained from electron diffraction results¹⁴ on diborane have certainly contributed to the relatively large amount of theoretical work completed to date on the open boranes. One can attribute the relative lack of theoretical studies of polyhedral boranes, in part, to the absence of a simple prototype cage molecule which could play a role analogous to that of diborane in the series of open hydrides. Tetraborane(4) is the obvious candidate (Figure 1). The molecule has not yet been synthesized, though the substituted analog, B₄Cl₄,¹⁵ is well known. Palke and Lipscomb¹¹ have previously undertaken an SCF calculation on the hypothe tical B_4H_4 molecule. With the programs then available they were able to perform only a single 20-hr calculation, for which they employed Slater exponents and only one choice of estimated B-B and B-H distances.

(4) (a) R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 36, 2179 (1962); (b) E. L. Muetterties and W. H. Knoth, "Polyhedral Boranes," Marcel Dekker, New York, N. Y., 1968, pp 78-79.
(5) See G. R. Eaton and W. N. Lipscomb, "NMR Studies of Boron

(5) See G. R. Eaton and W. N. Lipscomb, "NMR Studies of Boron Hydrides and Related Compounds," W. A. Benjamin, New York, N. Y., 1969, for a review.

(6) (a) I. R. Epstein, J. A. Tossell, E. Switkes, R. M. Stevens, and
W. N. Lipscomb, *Inorg. Chem.*, 10, 171 (1971), and references
therein; (b) W. N. Lipscomb, *Pure Appl. Chem.*, 29, 493 (1972).
(7) (a) M. F. Hawthorne, D. C. Young, and P. A. Wegner, *J. Amer.*

(7) (a) M. F. Hawthorne, D. C. Young, and P. A. Wegner, J. Amer. Chem. Soc., 87, 1818 (1965); (b) M. F. Hawthorne and T. D. A. Andrews, Chem. Commun., 443 (1965); (c) the σ - and π -bonding potential of B₁₁ (or B₉C₂) frameworks was developed by E. B. Moore, Jr., L. L. Lohr, Jr., and W. N. Lipscomb, J. Chem. Phys., 35, 1329 (1961).

(8) D. S. Matteson and N. K. Hota, J. Amer. Chem. Soc., 93, 2893 (1971).

(9) C. C. S. Cheung, R. A. Beaudet, and G. A. Segal, J. Amer. Chem. Soc., 92, 4158 (1970).

(10) T. F. Koetzle and W. N. Lipscomb, Inorg. Chem., 9, 2743 (1970).

(11) W. E. Palke and W. N. Lipscomb, J. Chem. Phys., 45, 3945 (1966).

(12) (a) I. R. Epstein, T. F. Koetzle, R. M. Stevens, and W. N. Lipscomb, J. Amer. Chem. Soc., 92, 7019 (1970); (b) D. S. Marynick,

I. R. Epstein, and W. N. Lipscomb, *J. Amer. Chem. Soc.*, **94**, 1748 (1972).

(13) E. Switkes, R. M. Stevens, and W. N. Lipscomb, J. Chem. Phys., 51, 2085 (1969).

(14) L. S. Bartell and B. L. Carroll, J. Chem. Phys., 42, 1135 (1964).

(15) (a) G. Urry, T. Wartik, and H. I. Schlesinger, J. Amer. Chem. Soc., 74, 5809 (1952); (b) M. Atoji and W. N. Lipscomb, J. Chem. Phys., 21, 172 (1953); Acta Crystallogr., 6, 547 (1953).

Figure 1. The geometry of B_4H_4 .

With the hope of providing a model calculation for the further theoretical investigation of the polyhedral boranes, we have undertaken a recalculation of the wave function of tetraborane(4), optimizing the boron-boron distance and all atomic orbital exponents of the minimum basis set of Slater orbitals. This procedure is made possible by advances in SCF programs¹⁶ which reduce the time for a single B_4H_4 calculation to 15 min and for a complete exponent variation calculation to 3 hr on the IBM 360/65.

Recently, methods for obtaining localized molecular orbitals (LMO's) by maximizing the self-repulsion energy¹⁷ have received much attention. The studies have established the relationships of localized structures to those obtained from the topological theory of boron hydrides,^{12b} the ability of a single configuration wave function to represent localized bonding components in molecules,¹⁷ the construction of approximate wave functions from LMO's,¹⁸ and the transferability of LMO's in the field of Compton scattering.¹⁹

We expected tetraborane(4) to provide a model system by which the transferability of LMO's to larger polyhedral boranes could be studied. However, the results of the localization described below indicate that the constraints placed upon the wave function by the high symmetry and by other aspects of the local environment have an unexpectedly great influence on the LMO's. We are only beginning to explore the effects of these constraints on simplified valence models of boranes and carboranes.

SCF Calculation

The optimized minimum basis-set wave function for B_4H_4 was determined using the SCF-LCAO method²⁰ and computer programs described earlier.¹⁶ All integrals were evaluated to an accuracy of five decimal places. Although the symmetry of the molecule is assumed by us to be T_d , the calculation was made in the C_{3v} subgroup as a matter of convenience. Slater orbitals, but not Slater exponents, formed the atomic basis. In the previous LCAO calculation on B_4H_4 by Palke and Lipscomb¹¹ the B-B distance in B_4Cl_4 of 1.74 Å and a B-H distance of 1.20 Å were chosen. Here, we

(16) R. M. Stevens, J. Chem. Phys., 52, 1937 (1970).
(17) (a) C. Edmiston and K. Ruedenberg, J. Chem. Phys., 43, S97 (1965); C. Edmiston and K. Ruedenberg in "Quantum Theory of Atoms, Molecules and the Solid State," P. O. Lowdin, Ed., Academic Press, New York, N. Y., 1966; (b) R. M. Pitzer, J. Chem. Phys., 41, 2216 (1964); (c) U. Kaldor, *ibid.*, 46, 1981 (1967); (d) C. Trindle and O. Sinanoglu, *ibid.*, 49, 65 (1968); J. Amer. Chem. Soc., 91, 853 (1969); (e) S. Rothenberg, J. Chem. Phys., 51, 3389 (1969); (f) W. England and M. Gordon, J. Amer. Chem. Soc., 91, 6864 (1969).
(18) (a) E. Switkes, R. M. Stevens, W. N. Lipscomb, and M. D.

(18) (a) E. Switkes, R. M. Stevens, W. N. Lipscomb, and M. D. Newton, J. Chem. Phys., 51, 2085 (1969); (b) E. Switkes, W. N. Lipscomb, and M. D. Newton, J. Amer. Chem. Soc., 92, 3847 (1970);
(c) M. D. Newton, E. Switkes, and W. N. Lipscomb, J. Chem. Phys., 53, 2645 (1970); (d) M. D. Newton and E. Switkes, *ibid.*, 54, 3179 (1971).

(19) I. R. Epstein, J. Chem. Phys., 53, 4425 (1970).
(20) C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).

Table I. Coordinates of Unique Atoms (au)^a

	x	У.	Z	
B1	1.85488	0.0	-0.65563	
B4	0.0	0.0	1.96734	
H1	3.97512	0.0	-1.40506	
H4	0.0	0.0	4.21613	

^a The molecule of T_d symmetry is oriented with the B_4-H_4 bond along z. These coordinates reflect the C_{3v} subgroup assumed for convenience in the SCF calculation.

Table II. Optimized Exponents and Energy Analysis^a

		Energy analysis				
	Exponents	Energy	Value			
B 1s B 2s B 2p H _t 1s	4.686 1.386 1.389 1.173	Electronic energy Nuclear repulsion Total energy Kinetic energy -E/T IP	$\begin{array}{r} -168.7280\\ 67.9682\\ -100.7598\\ 100.7235\\ 1.0004\\ 0.398\end{array}$			
		Atomization energies	-0.776 ^b -0.930 ^c			

^a All quantities are in atomic units. ^b The reference atoms use Clementi's best single-5 exponents: E(B) = -24.4984, E(H) = -0.500. ^c The reference atoms employ B₄H₄ molecular exponents: E(B) = -24.4724, E(H) = -0.4850.

assumed a B-H distance of 1.19 Å⁶ and optimized the B-B distance to the value of 1.70 Å. Coordinates of the unique boron and hydrogen atoms are given in Table I.

The final values of the exponents are given in Table II. The H 1s, B 2p, B 2s, and B 1s exponents were respectively chain optimized until convergences of 0.0001 au in the energy and 0.02 au in the exponents were achieved. Results obtained using exponents from this optimized calculation show that B_4H_4 is stable relative to four BH units by 316.89 kcal/ mol in this rather crude approximation. Furthermore, the SCF energy of B_4H_4 is lowered by 37.5 kcal/mol when the optimized exponents are used instead of the exponents from diborane. It seems likely that a definite improvement in the energy, and thus in the wave function, can be obtained from calculations on polyhedral molecules if B_4H_4 rather then B_2H_6 is used as a source of parameters.

Energetics

The total energies, virial ratio, ionization potential, and atomization energies are listed in Table II. Atomization energies are calculated from Clementi's²¹ best single- ζ atomic energies and from atomic energies obtained from SCF wave functions for boron and hydrogen using the optimized B₄H₄ exponents. The atomization energies calculated from the second method agree quite well with experiment for known boron hydrides,⁶ although the agreement is due to a fortuitous cancelation of errors. Orbital energies and orbital coefficients are given in Table III.

Population Analysis and Density Maps

The Mulliken²² atomic charges and the overlap and orbital populations are presented in Table IV. The atomic charges in our optimized calculation are reversed in sign and smaller in magnitude than those calculated by Palke and Lipscomb. Nevertheless, the negative charge on the hydrogen is consistent with the finding that in SCF studies of this quality, all terminal hydrogens are slightly negatively charged. However, the charge on boron is quite small in magnitude as compared

Figure 2. Total electron density in a B-B-B plane of B_4H_4 . Contours are at 3.0, 0.30, 0.17, 0.14, 0.11, 0.09, and 0.05 e/au³.

Figure 3. Total electron density for a B-H bond of B_4H_4 . Contours are at 3.0, 0.30, 0.17, 0.14, 0.11, 0.09, and 0.05 e/au³, assuming two-electron occupancy.

with results of the previous calculations on other hydrides. Overlap populations of 0.492 for B-B and 0.824 for B-H also reflect the change to the optimized basis set. Total electron density contours are given for the $B_1-B_2-B_3$ plane and the $H_1-B_1-B_2$ plane, respectively, in Figures 2 and 3. The symmetry of the *total* density in the $B_1-B_2-B_3$ plane is immediately apparent.

The SCF calculation does not offer any obvious indication that B_4H_4 is unstable, except, possibly, for the vacant E pair of orbitals at $\epsilon = 0.0552$ au. The molecule is bound relative to four BH units, and it shows a minimum in the energy surface when the B-B bond distance is optimized. Of course, we have not studied other distortions, nor have we explored probable transition states in encounters with the same or different molecules. Both experimental and further theoretical studies are desirable.

Localized Orbitals

The localization calculation was performed using the Edmiston-Ruedenberg (ER) procedure^{17a} for obtaining localized molecular orbitals (LMO's). Successive 2×2 unitary transformations were applied to the canonical mole-

⁽²¹⁾ E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, 686 (1963).

⁽²²⁾ R. S. Mulliken, J. Chem. Phys., 36, 3428 (1962).

Table III. B₄H₄ Occupied and Unoccupied Molecular Orbitals and Energies

			-									
	1	2	3	4	5	6	7	8	9	10	11	12
	-7.6277	-7.6269	-7.6269	-7.6269	-0.9372	-0.6097	-0.6097	-0.6097	A1 -0.5772	-0.3981	-0.3981	-0.3981
B1-15	0.4999	0.8122	0.0000	-0.2830	0 1240	Ó 1435	0.0000	-0.0507	-0.0260	0.0400	0.0000	-0 0173
B1-25	0.0070	0.0259	0.0000	-0.0091	-0 2245	-0 4349	0.0000	-0.0507	-0.0209	-0.3338	0.0000	-0.0173
B1-2P7	0.0001	0.0008	0.0000	-0.0039	-0.2565	-0.4300	0.0000	-0.1345	0.1352	-0.2328	0.0000	0.0025
81-2PX	-0.0001	-0.0058	0,0000	-0.0058	-0.0352	-0.1069	0.0000	-0,1200	-0.0000	-0.23/0	0.0000	-0.2920
81-2PY	0.0000	0.0000	-0.0035	0.0000	0.1562	-0.1900	-0.1146	0.0204	0.2421	0.2934	-0.3744	-0.2318
82-15	0.4999	-0.4061	0 70 34	-0.2930	0.0000	0.0000	~0.1263	0.0000	0.0000	0.0000	-0.3766	0.0000
82-25	0.0070	-0.0130	0.0224	-0.0000	-0 2346	-0.0718	-0.3793	-0.0501	-0.0209	-0.0245	-0.3014	-0.0173
82-2P7	0.0001	-0-0004	0.0007	-0.0038	-0.2565	-0 0167	-0.3785	-0.1345	-0.0954	0.1104	-0.2010	-0.2025
82-2PX	0.0000	-0.0041	0.0010	-0.0004	-0.0791	-0.0142	0.0245	-0.0142	-0.0000	-0 2084	-0.2057	0.1108
82-2PV	-0.0001	0.0010	-0.0052	0.0007	0.1352	0.0347	-0.1767	0.0246	0.2097	-0.2000	-0.1274	-0.2057
83-15	0.4999	-0.4061	-0.7034	-0.2830	0.1240	-0.0718	-0.1243	-0.0507	-0.0269	-0.2710	-0.0474	-0.0173
83-25	0.0070	-0.0130	-0.0224	-0.0091	-0.2365	0.2184	0.3783	0.1545	0.1352	0.1166	0.2016	0.0823
83-2PZ	0,0001	-0.0004	-0.0007	-0.0038	-0.0552	-0.0142	-0:0245	-0.1246	-0.0856	0.1188	0 2057	-0.2926
83-2PX	0.0000	-0.0041	-0.0010	-0.0004	-0.0781	-0.1366	-0.0347	-0.0142	-0.1211	-0.2086	0.2910	0.1188
B3-2PV	0.0001	-0.0010	-0.0052	-0.0007	-0.1352	-0.0347	-0.1767	-0.0246	-0.2097	0.2910	0.1274	0.2057
84-15	0.4904	0.000	0.0000	0.8656	0,1240	0.0000	0.0000	0.1522	-0.0269	0.0000	0.0000	0.0520
84-25	0.0067	0.0000	0.0000	0.0275	-0.2365	0.0000	0.0000	-0.4633	0.1352	0.0000	0.0000	-0.2469
84-2PZ	-0.0000	0.0000	0.0000	-0.0061	0.1657	0.0000	0.0000	-0.2068	0.2568	0.0000	0.0000	b. 3794
84-2PX	0.0000	-0.0035	C.0000	0.0000	0.0000	-0.1166	0.0000	0.0000	0.0000	-0.3766	0.0000	0.0000
B4-2PY	0.0000	0.0000	-0.0035	C.COCO	0.0000	0.0000	-0.1166	0.0000	0.0000	0.0000	-0.3766	0.0000
H1-1S	-0.0014	-0.0030	0.0000	0.0010	-0.0553	-0.3806	0.0000	0.1346	0.2469	0.2632	0.0000	-0.0930
H2-1S	-0.0014	0.0015	-0.0026	0.0010	-0.0553	0.1903	-0.3296	0.1346	0.2469	-0.1316	0.2279	-0.0930
H3-1S	-0.0014	0.0015	0.0026	0.0010	-0.0553	0.1903	0.3296	0.1346	0.2469	-0.1316	-0.2279	-0.0930
H4-1S	-0.0014	0.0000	0.0000	-0.0032	-0.0553	0.0000	0.0000	-0.4037	0.2469	0.000 0	0.0000	0.2792
	13 E	14 E	15 T2	16 T2	17 T2	10 T1	19 T 1	20 T 1	21 A 1	22 T 1	23 T 1	24 T 1
	0.0552	0.0552	0.4343	0.4343	0.4343	0.5157	0.5157	0,5157	0.5271	0.8447	0.8447	C.8447
B1-15	0.0000	c.cooc	0.0000	0.0001	0.0000	0.1986	0.0000	-0.0702	0.0489	0.0361	0.0000	0.0128
B1-2S	-0.0000	0.0000	0.0000	-0.0006	0.0000	-1.5004	0.0000	0.53Č8	-0.4870	-0.4006	0.0000	-0.1417
B1-2PZ	0.4590	C.000C	0.0000	0.8173	0.0000	0.0726	0.0000	0.3953	0.1446	-0.3765	0.0000	-0.4234
B1-2PX	0.1623	0.0000	0.0000	0.2890	0.0000	0.2146	0.0000	0.0732	-0.4083	1.3552	0.0000	0.3765
81-2PY	0.0000	-0.4869	0.8173	0.0000	0.2892	0.0000	0.4211	0.0000	0.0000	0.0000	0.2902	0.0000
82-15	0.0000	0.0000	0.0000	-0.0000	0.0001	-0.0993	0.1720	-0.0702	0.0489	-0.0180	0.0313	0.0128
82-25	0.0000	-0.0000	0.0000	C.0003	-0.0005	C. 7502	-1.2993	0.5308	-0.4870	0.2003	-0.3469	-0.1417
B2-2P2	-0.2295	0.3975	0.0000	-0.4087	0.7078	-0.0363	0.0629	0.3953	0.1446	0.1682	-0.3260	-0.4234
82-2PX	-0.3240	-0.2811	-0.7078	0.2891	0.0001	0.3695	0.0894	-0.0366	0.2042	0.5565	-0.4611	-0.1883
B2-2P1	-0.2811	-0.0000	-0.4086	0.0001	0.2891	0.0894	0.2002	0.0634	-0.3536	-0.4611	1.0869	0.5261
03-13	0.0000	0.0000	0.0000	-0.0000	-0.0001	-0.0993	-0.1720	-0.0702	-0 4970	-0.0180	-0.0313	-0.1417
B 3-25	-0.2295	-0 3975	0.0000	-0.4087	-0.7078	-0.0363	-0 0429	0.3053	-0.4670	0.1882	0.3260	-0.4234
83-2PY	-0.3246	0 2811	0.7078	0.2891	-0.0001	0.3695	-0.0894	-0.0366	0.2042	0.5565	0.4611	-0.1883
83-2PY	0.2811	-0.0000	-0.4086	-0.0001	0.2891	-0.0894	0.2662	-0.0634	0.3536	0.4611	1.0889	-0.3261
84-15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2106	0.0491	0.0000	0.0000	-0.0383
84-25	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-1.5912	-0.4881	0.0000	0.0000	0.4252
84-2P7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1891	-0.4330	0.0000	0.0000	-1.4883
84-2PX	0.4868	0.0000	0.0000	-0.8667	0.0000	0.4216	0.0000	0.0000	0.0000	0.2903	0.0000	0.0000
B4-2PY	0.0000	0.4868	0.0000	0.0000	-0.8667	0.0000	0.4216	0.0000	0.0000	0.0000	0.2903	0.0000
⊣1-1 S	0.0000	0.0000	0.0000	0.0003	0.0000	0.7006	0.0000	-0.2481	0.6720	-0.8857	0.0000	-0.3131
-12-1S	0.0000	0.0000	0.0000	-0.0001	0.0003	-0.3503	0.6067	-0.2481	0.6720	0.4429	-0.7671	-0.3131
43-1S	0.0000	0.0000	0.0000	-0.0001	-0.0003	-0.3503	-0.6067	-0.2481	0.6720	0.4429	0.7671	-0.3131
44-15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.7428	0.6725	0.0000	0.0000	0.9394

Table IV. Atomic Charges and Overlap and Orbital Populations

	Atomic charges			Overlap po	opulations		
	Ia		II ^b	Ia	IIp	-	
B	+ 0.004	46 –	0.08	0.492	0.451	(B-B)	
Н	-0.004	46 +	0.08	0.824	0.837	(B-H)	
		Ort	oital popu	lations			
	1s	28	2p _x	2py	2p _z		
B1	1.994	0.998	0.868	0.551	0.59	1	
В2	1.994	0.998	0.631	0.789	0.59	1	
В3	1.994	0.998	0.631	0.789	0.59	1	
B4	1.994	0.998	0.551	0.551	0.90	3	
н	1.004						

^a This calculation. ^b Reference 11.

cular orbitals (CMO's), which result from the SCF calculation, in order to maximize the self-repulsion energy

$$J = \sum_{i} \langle ii|ii \rangle = \sum_{i} f \phi_{i}(1)\phi_{i}(1)\frac{1}{r_{12}} \phi_{i}(2)\phi_{i}(2) \, \mathrm{d}v_{1} \mathrm{d}v_{2} \tag{1}$$

This procedure is thus completely *ab initio*. The uniqueness of the calculations was then tested by repeating the calculation several times, after subjecting the initial CMO's to different initial random unitary transformations.^{18a} Iterations were continued until we obtained a convergence of the LMO

coefficients, which provide a much more stringent convergence test than does the self-repulsion energy.

The self-repulsion energy can be expanded about an extremum in powers of a scalar parameter ϵ^{23}

$$J = J_0 + \epsilon J_1 + \epsilon^2 J_2 + \dots$$
 (2)

where

j J

$$\begin{aligned} & \mathcal{J}_{0} = \sum_{i} \langle ii \mid ii \rangle \\ & \mathcal{J}_{1} = \sum_{i \geq i} 4[\langle ii \mid ij \rangle - \langle jj \mid ji \rangle] A_{ji} \end{aligned}$$
(3)

The A_{ji} are the n(n-1)/2 independent elements which define a unitary matrix. For any localization procedure which maximizes J, the requirement that the calculation be at an extremum is

$$\nabla J = \left\{ \sum_{i>j} \left[\langle ii | ij \rangle - \langle jj | ji \rangle \right]^2 \right\}^{1/2} = 0$$
(4)

This condition requires that the first-order term vanishes. However, one must realize that localized orbitals are not the only type of orbitals which satisfy (4). For example, the benzene localization^{18d} appears to have converged to a saddle point when σ - π separation was imposed, yielding

(23) W. J. Taylor, J. Chem. Phys., 48, 2385 (1968).

LMO's which are actually symmetry-equivalent orbitals. Symmetry-equivalent orbitals will satisfy (4), giving zero for all n(n-1)/2 first derivatives of the self-energy surface;^{18b} but the calculation may be at a saddle point and not a true maximum.

Although B_4H_4 is a hypothetical molecule and has a simple but highly symmetrical proposed tetrahedral structure, the LMO's obtained from the ER procedure are quite interesting for at least three reasons. First, localization of B_4H_4 yields four three-center BBB bonds which are asymmetrical (Table V). These four different BBB bonds on the tetrahedral faces are, however, nearly equivalent in terms of delocalization percentages (Table V), defined as ^{18b}

$$d = [\frac{1}{2} \int (\phi^{T} - \phi)^{2} dv]^{1/2} \times 100\%$$

where ϕ is an LMO and ϕ^{T} is obtained from ϕ by truncating the nonlocal contributions to ϕ and renormalizing. Second, the B-H bonds are not only unequivalent in terms of orbital populations, but they are also 1.5-2 times more delocalized than B-H bonds in any previous localization (Table V). Third, 33 iterations were required before the convergence criterion was met. For comparison, the diborane localization required only 5 iterations, and the final gradient of the selfenergy surface in the direction of steepest ascents for B₂H₆ was several orders of magnitude smaller than that of B₄H₄. Values of the gradient and self-repulsion energy after 5, 15, 30, and 33 iterations are given in Table VI to illustrate this slow rate of convergence for B₄H₄. The final energy analysis for B₄H₄ is given in Table VII.

Discussion

In a localization procedure there is always a possibility of convergence to a minimum which may not be the lowest of all possible minima. The several starting points, most of which were generated from a random unitary transformation of the CMO's, make this possibility unlikely but do not eliminate it. Nevertheless, we shall discuss the surprising features of the localization in B_4H_4 believing that we have indeed found the lowest minimum in the self-repulsion energy.

Perspective on the percentages of delocalization is gained by comparison with earlier studies. External B-H bonds in boron hydrides show d values of 9-10%. Even the B-H bonds extending toward the open face of B_5H_{11} show d values of only 14% (to nonapex B) and 20% (to apex B). Hence, the values for B-H bonds in B_4H_4 are unusual indeed (Table V). The values of d for the BBB bonds are somewhat high but not unusual. Delocalization percentages for threecenter bonds in B_5H_9 (d = 20-22%), in B_5H_{11} (d = 20%), and in B_6H_{10} (d = 20%) are only somewhat smaller than those shown in Table V.

An analysis of the n(n-1)/2 terms in eq 4 shows that, after convergence, the major contribution to the self-repulsion energy arises from the B-H bonds in B₄H₄. Therefore, these B-H bonds are more weakly coupled to the self-repulsion energy than are the BBB bonds. Ambiguous localizations, primarily in framework bonding, have appeared earlier^{12b,18b} in other molecules having high symmetry. These molecules (B₅H₉ and 1,6-C₂B₄H₆) were similar to B₄H₄ in the sense that some LMO's were weakly coupled to the self-repulsion energy, and they gave *d* values nearly as high as that shown for the BBB bonds in B₄H₄. Perhaps the one common feature is the constraint that the geometrical symmetry exerts. In a molecule of low symmetry the LMO's appear to delocalize in order to approach the molecular symmetry, within the other constraints dis-

Table V. Per Cent Delocalization and Orbital Populations for Localized Orbitals^a

Bond	d	Orbital populations			
B,-H,	22.3	0.912	0.918		
в,-н,	29.5	0.844	0.849		
B ₃ -H ₃	40.8	0.728	0.663		
$B_4 - H_4$	35.8	0.776	0.751		
$B_{1} - B_{2} - B_{3}$	20.9	0.759	0.727	0.409	
$B_{2} - B_{3} - B_{4}$	18.7	0.735	0.721	0.542	
B ₁ - B ₃ - B ₄	21.4	0.653	0.758	0.536	
$B_{1} - B_{2} - B_{4}$	21.2	0.570	0.514	0.815	

^a The values for d in ref 6 and 18b were found to be in error by a factor of $2^{1/2}$; thus, the d values in ref 6 and 18b should be multiplied $2^{1/2}$ when comparing them with the d values in this table.

Table VI. Gradient of the Self-Energy and the Self-Energy after 5, 15, 30, and 33 Iterations (au)

Iterations	J	∇J^a
5	14.969704	0.00706
15	14.969960	0.00656
30	14.971826	0.000479
33	14.971883	0.000280

^a Calculated using eq 4.

Table VII. Localization Energy Analysis (au)

	CMO's	LMO's	
Total two-electron energy	98.6352	98.6352	
Coulomb energy	106.6238	100.5925	
Exchange energy	-7.9886	-1.9573	
Self-energy	8.9405	14.9719	

cussed below, while in a molecule of high geometrical symmetry these other constraints prevent the LMO's from localizing to the full molecular symmetry. Extreme cases are three framework pairs in B_5H_9 and seven framework pairs in $1,6-C_2B_4H_6$, both in situations where a fourfold axis exists in the molecule. The essence of localization is the mixing of orbitals of different symmetry classes in order to keep electron pairs away from pairs in other orbitals.

The two additional constraints on the wave function are that the total electron density remain constant and that the LMO's remain orthogonal after a transformation. Constancy of density is a matter of charge conservation and therefore cannot be violated. However, orthogonality of the LMO's is largely a computational convenience, and relaxation of this constraint may merit further study.

The high symmetry of B_4H_4 , these additional constraints, and the weak coupling of the external B-H bonds then direct attention to the framework bonds. We find here that four symmetrical three-center BBB bonds, one in each face of the tetrahedron, give a lower self-repulsion energy than do the localized bonds (Table V). Some tendency toward direct bonding along edges B_1 - B_2 , B_2 - B_3 , and B_1 - B_3 , with a slightly high concentration of charge on B_4 , seems to occur. Rather than form symmetrical three-center bonds, the tetrahedral B_4H_4 molecule appears to try to concentrate the localized bonding pairs along edges, insofar as it can within the strong constraints noted above. The result is quite unsymmetrical three-center framework BBB bonds and large perturbations in the external BH bonds which are weakly coupled to the self-repulsion energy. In summary, the asymmetries in these BBB bonds can be attributed to a failure to minimize interbond repulsions sufficiently when the unique topological structure²⁴ (the symmetrical three-center bond) is forced on each face of the regular tetrahedron.

We are as yet unprepared to say whether this unexpected

(24) I. R. Epstein and W. N. Lipscomb, Inorg. Chem., 10, 1921 (1971).

pathology of localized bonding in B_4H_4 is related to its nondiscovery. Studies of localized orbitals in reactions, intermediates, and transition states may be useful, especially in reactions in which pairing schemes are conserved. Perhaps the only clear experimental fact is that B₄Cl₄ does exist, and we suggest that a study, which may soon be possible, of localized orbitals in this molecule may be of interest. There is a set of vacant E orbitals in B_4H_4 at an eigenvalue of only 0.055 au, perhaps placing this molecule in the vacant-orbital class, like BH_3 . Back- π -bonding is possible in BCl_3 , but not in BH_3 , which dimerizes to B_2H_6 . Longuet-Higgins²⁵ has shown that the E pair is of the appropriate symmetry to accept localized back- π -donation from Cl in B₄Cl₄, and he suggested that B₄Cl₄ might be stabilized in a way that B_4H_4 cannot. This is a more detailed and informative statement than the topological theory of King,²⁶ who proposed that vertices of order 3 (boron bound to three other borons) should result in molecular instability. The existence of B_4Cl_4 is inconsistent with this proposal of King and is also not compatible with his

(25) H. C. Longuet-Higgins, Quart. Rev., Chem. Soc., 11, 121 (1957).
(26) R. B. King, J. Amer. Chem. Soc., 94, 95 (1972).

contention that stable, closed neutral borane frameworks must have either BH_2 groups or bridge hydrogens. Thus, purely topological arguments shed little light on the B_4H_4 problem.

In conclusion, B_4H_4 should be one of a reasonable set of molecules to serve as a prototype for future SCF calculations on polyhedral boranes and carboranes. Analysis of the B_4H_4 localization indicates that the LMO's are, in some cases, very dependent on symmetry and other constraints placed upon LMO's. Thus one should be extremely careful with regard to similarity of local chemical environment and molecular symmetry when constructing approximate molecular wave functions from the localized bond components.²⁷

Registry No. B₄H₄, 27174-99-8.

Acknowledgments. We wish to thank the Office of Naval Research for support of this work and D. S. Marynick for many helpful discussions and for the use of several of his computer programs. I. R. E. thanks the National Science Foundation for a predoctoral fellowship.

(27) Note Added in Proof. Ab initio SCF calculations have been completed on the molecules B_4F_4 and B_4Cl_4 . We will publish the results shortly.

Contribution from the Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210

Preparation and Proposed Structure for Bis[bis(dimethylamino)bromoborane]-Tris(titanium tetrabromide)

M. R. SULIMAN¹ and E. P. SCHRAM*

Received September 20, 1972

Treatment of $[(CH_3)_2N]_2Br$ with $TiBr_4$ affords $\{[(CH_3)_2N]_2BBr\}_2\{TiBr_4\}_3$. The stoichiometry of the latter was established by determination of the reactant ratio and by nucleophilic degradation affording $TiBr_4 \cdot N(CH_3)_3$ and $[(CH_3)_2N]_2BBr$. A structure is proposed for $\{[(CH_3)_2N]_2BBr\}_2\{TiBr_4\}_3$ based on infrared assignments and the unusual stoichiometry of this compound.

Introduction

Treatment of TiCl₄ with $[(CH_3)_2N]_2BCl$ has been reported to afford the labile species { $[(CH_3)_2N]_2BCl_2{TiCl_4}_3$ (I).² Several possible structures were suggested including an ionic formulation involving hexachlorotitanate, $TiCl_6^{2-}$, as well as two different molecular formulations with $[(CH_3)_2N]_2BCl$ moieties bridging between three TiCl₄ species. One example of the latter consisted of all three Ti being six-coordinate with single Cl bridges, whereas the other involved mixed fiveand six-coordinate Ti with no Cl bridges. Based on the ease of dissociation of I, a molecular formulation was favored rather than one involving ionic species. The reaction of TiBr₄ with $[(CH_3)_2N]_2BBr$ was investigated in order to prepare a compound stoichiometrically analogous to I but with the larger Br moieties more sterically limiting compared to those of Cl, thus allowing a distinction between molecular structures.

Experimental Section

Equipment. Chemical reactions and procedures were followed

(1) In partial fulfillment of the Ph.D. degree, The Ohio State University, 1971.

(2) G. S. Kyker and E. P. Schram, J. Amer. Chem. Soc., 90, 3672 (1968).

as previously described while infrared spectra were recorded with a Perkin-Elmer 457 spectrometer employing KBr and CsBr cell windows.²

Reagents. Bis(dimethylamino)bromoborane, $[(CH_3)_2N]_2BBr$, was prepared by treatment of BBr₃ with a twofold molar excess of tris(dimethylamino)borane, $[(CH_3)_2N]_3B$, in *n*-pentane.³ The reaction mixture was stirred for 3 hr followed by removal of solvent under vacuum, affording a colorless liquid which was distilled in the range $35-37^{\circ}$ (2 Torr), lit.³ $25-28^{\circ}$ (0.5 Torr). Infrared data: 3015 (ms), 2940 (s, sh), 2900 (vs), 2820 (ms), 1555 (s, sh), 1535 (vvs), 1482 (w, sh), 11455 (vs), 1412 (vvs), 1118 (w, sh), 1070 (vvs), 900 (s, sh), 880 (ms), 838 (s), 582 (w, sh), and 565 (ms) cm⁻¹.

Tris(dimethylamino)borane, $[(CH_3)_2N]_3B$, was prepared by the treatment of BCl₃ with more than a sixfold molar excess of HN- $(CH_3)_2$.⁴ The resulting liquid was freed of any traces of bis(dimethylamino)chloroborane, $[(CH_3)_2N]_2BCl$, by further treatment with HN- $(CH_3)_2$ followed by fractional distillation through a -22° trap into one at -196°. Tris(dimethylamino)borane recovered from the -22° trap was identified by its vapor-phase infrared spectrum⁵ and by its 25° vapor tension of 5.2 Torr, lit.⁶ 5.2 Torr.

(3) R. J. Brotherton, J. Amer. Chem. Soc., 82, 6242 (1960).
(4) J. Goubeau, M. Rahtz, and H. J. Becher, Z. Anorg. Allg. Chem., 275, 161 (1954).

(5) G. S. Kyker and E. P. Schram, J. Amer. Chem. Soc., 90, 3678 (1968).

(6) E. Wiberg and K. Schuster, Z. Anorg. Allg. Chem., 213, 77 (1933).